Binary Classifiers and Latent Sequence Models for Emotion Detection in Suicide Notes
نویسندگان
چکیده
منابع مشابه
Binary Classifiers and Latent Sequence Models for Emotion Detection in Suicide Notes
This paper describes the National Research Council of Canada's submission to the 2011 i2b2 NLP challenge on the detection of emotions in suicide notes. In this task, each sentence of a suicide note is annotated with zero or more emotions, making it a multi-label sentence classification task. We employ two distinct large-margin models capable of handling multiple labels. The first uses one class...
متن کاملEmotion Detection in Suicide Notes using Maximum Entropy Classification
An ensemble of supervised maximum entropy classifiers can accurately detect and identify sentiments expressed in suicide notes. Using lexical and syntactic features extracted from a training set of externally annotated suicide notes, we trained separate classifiers for each of fifteen pre-specified emotions. This formed part of the 2011 i2b2 NLP Shared Task, Track 2. The precision and recall of...
متن کاملA Combined Approach to Emotion Detection in Suicide Notes
In this paper, we present the system we have developed for participating in the second task of the i2b2/VA 2011 challenge dedicated to emotion detection in clinical records. On the official evaluation, we ranked 6th out of 26 participants. Our best configuration, based upon a combination of both a machine-learning based approach and manually-defined transducers, obtained a 0.5383 global F-measu...
متن کاملStatistical and Similarity Methods for Classifying Emotion in Suicide Notes
In this paper we report on the approaches that we developed for the 2011 i2b2 Shared Task on Sentiment Analysis of Suicide Notes. We have cast the problem of detecting emotions in suicide notes as a supervised multi-label classification problem. Our classifiers use a variety of features based on (a) lexical indicators, (b) topic scores, and (c) similarity measures. Our best submission has a pre...
متن کاملThree Hybrid Classifiers for the Detection of Emotions in Suicide Notes
We describe our approach for creating a system able to detect emotions in suicide notes. Motivated by the sparse and imbalanced data as well as the complex annotation scheme, we have considered three hybrid approaches for distinguishing between the different categories. Each of the three approaches combines machine learning with manually derived rules, where the latter target very sparse emotio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Informatics Insights
سال: 2012
ISSN: 1178-2226,1178-2226
DOI: 10.4137/bii.s8933